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Abstract
Background  Despite the prevalence of Autism Spectrum Disorder (ASD) globally, there’s a knowledge gap 
pertaining to autism in Arabic nations. Recognizing the need for validated biomarkers for ASD, our study leverages 
eye-tracking technology to understand gaze patterns associated with ASD, focusing on joint attention (JA) and 
atypical gaze patterns during face perception. While previous studies typically evaluate a single eye-tracking metric, 
our research combines multiple metrics to capture the multidimensional nature of autism, focusing on dwell times on 
eyes, left facial side, and joint attention.

Methods  We recorded data from 104 participants (41 neurotypical, mean age: 8.21 ± 4.12 years; 63 with ASD, 
mean age 8 ± 3.89 years). The data collection consisted of a series of visual stimuli of cartoon faces of humans and 
animals, presented to the participants in a controlled environment. During each stimulus, the eye movements of the 
participants were recorded and analyzed, extracting metrics such as time to first fixation and dwell time. We then 
used these data to train a number of machine learning classification algorithms, to determine if these biomarkers can 
be used to diagnose ASD.

Results  We found no significant difference in eye-dwell time between autistic and control groups on human or 
animal eyes. However, autistic individuals focused less on the left side of both human and animal faces, indicating 
reduced left visual field (LVF) bias. They also showed slower response times and shorter dwell times on congruent 
objects during joint attention (JA) tasks, indicating diminished reflexive joint attention. No significant difference was 
found in time spent on incongruent objects during JA tasks. These results suggest potential eye-tracking biomarkers 
for autism. The best-performing algorithm was the random forest one, which achieved accuracy = 0.76 ± 0.08, 
precision = 0.78 ± 0.13, recall = 0.84 ± 0.07, and F1 = 0.80 ± 0.09.

Conclusions  Although the autism group displayed notable differences in reflexive joint attention and left visual 
field bias, the dwell time on eyes was not significantly different. Nevertheless, the machine algorithm model trained 
on these data proved effective at diagnosing ASD, showing the potential of these biomarkers. Our study shows 
promising results and opens up potential for further exploration in this under-researched geographical context.
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Background
Autism spectrum disorder (ASD) is a neurodevelopmen-
tal condition characterized by variations in social and 
communicative development, sensory changes, and limi-
tations in behaviors and interests. Most autism research 
stems from Western nations, with relatively limited 
knowledge on the features, appropriate assessment tools, 
and individual differences of individuals with autism in 
Arabic countries. A large-scale study in Qatar recently 
revealed an autism prevalence of 1.14% there, in align-
ment with findings from international studies [1]. In clin-
ical practice, ASD diagnoses are based on an individual’s 
symptoms and developmental history. However, in group 
studies, autism has been linked to dysfunction in various 
neurocognitive systems [2]. For instance, increasing evi-
dence suggests that ASD is associated with impairments 
in joint attention (JA) [4] and atypical gaze patterns when 
viewing social information such as faces [5]. Eye-tracking 
technology, being non-invasive and user-friendly, has 
the potential to provide biomarkers for ASD when used 
alongside stimuli and experimental designs reflecting 
autism’s atypical behavioral profile [6].

Research consistently shows that people tend to focus 
on the central areas of faces, particularly the eyes, when 
looking at others’ faces [7]. However, eye-tracking stud-
ies on children with autism have demonstrated a reduced 
focus on the eye region [8], [9]. Therefore, our current 
study collected data on gaze duration at the eye region 
during face perception in Saudi children with and with-
out autism. Eye-tracking technology has also revealed 
that individuals typically focus first and longer on the 
face’s left hemifield, displaying a “left visual field bias” 
(LVF) during face perception, which is linked to right 
hemispheric dominance for face processing [10]. This 
LVF bias is weaker or absent in toddlers [9] and adults 
[11], [12] with autism, suggesting a less specialized face-
processing system. Moreover, Guillon et al. [9] found 
gaze differences in toddlers with autism when viewing 
dog faces and human cartoon faces. In this study, we 
examined LVF bias by analyzing total gaze duration on 
the left versus the right side of human and animal car-
toon faces, and we also measured the time spent gazing 
on the eyes region.

Joint attention (JA) is an essential developmental pre-
cursor to social and language development in children. 
Typically developing infants begin to exhibit JA dur-
ing the latter half of their first year [13], which involves 
responding to another person’s gaze direction by look-
ing at the same objects and events. JA impairments are 
an early indicator of autism, and JA skills are linked to 
natural outcomes in autism, making them a promising 

intervention target [4]. JA is often assessed in autism 
diagnostic tools, such as the ADOS [14]. However, accu-
rate JA coding can be challenging and time-consuming. 
In this study, we employed eye movement recordings 
[15], [16], [6] to objectively assess JA in terms of reflexive 
gaze following.

The complexity of autism diagnosis and the limited 
screening methods designed for screening in different 
regions with cultural and communication differences 
such as Saudi Arabia recently motivated researchers to 
explore objective measurements for autism screening. 
A recent study examining the usability of eye-tracking 
data as a screening system for autism tested for a spe-
cific group in Saudi Arabia found that the Support Vec-
tor Machine algorithm was useful to distinguish children 
with and without autism, with accuracy of 88.6%, speci-
ficity of 92.31%, and sensitivity 86.63% [6]. Another 
research at Najran University in Saudi Arabia investi-
gated eye tracking-based diagnosis using machine learn-
ing by utilizing open datasets which includes over 500 
images of scan paths for 29 individuals with ASD and 30 
control group participants. The findings of this research 
recommend using hybrid artificial neural networks and 
support vector machine algorithms.

A recent systematic review of eye-tracking autism 
screening studies [21] explored 24 studies between 2015 
and 2021 that used machine learning for autism classifi-
cation, for a total population of 1396 individuals. The per-
formance varied in the range of groups (accuracy = 81%, 
specificity = 79%, sensitivity = 84%). However, the varia-
tion of implementation methods reduces the reliability 
of the results, especially as none of the studies performed 
a thorough comparison between different methods, but 
just considered them in isolation. Moreover, none of the 
included studies were specific to this study’s target group, 
which includes differences in language and culture that 
may affect the perception of participants where group 
specific studies are encouraged to explore further in this 
domain [21].

The aim of this study was to compare the gaze patterns 
of Saudi children with and without autism on three face-
processing metrics (gaze duration at the eye region, LVF 
bias, and JA) and investigate the potential of these met-
rics for autism diagnosis classification for this specific 
population, on which little to nothing is documented in 
the literature. Considering autism’s multidimensional 
nature, we hypothesized that combining multiple eye-
tracking metrics could enhance autism identification 
accuracy. To test this, we compared groups on each met-
ric and implemented several traditional machine learning 
(ML) models for diagnostic classification. The goal of the 
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algorithms was to be able to correctly classify patients as 
having ASD or not based on their eye-tracking data. As 
such methods can operate in real time once trained, they 
would make powerful screening tools, shortening the 
currently long waiting lists for performing ASD screen-
ing tests with traditional methods.

Methods
The experiment followed the steps reported in Fig. 1 and 
described in detail in the next sections. Ethical approval 
was obtained from King Faisal Specialist Hospital and 
Research Centre (RAC – 2,201,183). The experiments 
took place in the Human Behavior Lab of the hospital. 
Participants were welcomed to the lab and informed 
about the procedure upon arrival. Consent forms 
were collected with the permission of the participants’ 
guardians.

Participants
A participant recruitment form was electronically dis-
seminated through email and the hospital’s official 
social media channels to current patients at the cen-
ter and those on the waiting list. A total of 130 partici-
pants were enrolled for this study. Of these, 28 were later 
excluded from the analysis due to inadequate calibra-
tion or because their measurements were invalid (e.g., 
they did not look at the screen during one or more visual 
stimuli). The final number of participants with satisfac-
tory calibration and engagement rate was 104 (74 males, 
30 females): 41 neurotypical (23 male, 18 female), 63 with 
ASD (51 male, 12 female). In the ASD group, the young-
est participant was one year and ten months old, and the 

oldest was 22 years old; in the neurotypical group, the age 
range spanned from two to 17 years old. The mean age 
was 8 ± 3.89 years for the ASD group and 8.21 ± 4.12 years 
for neurotypical group. The two groups were comparable 
in terms of age (t = 0:26(72); p = 0:797; d = -0:05) and gen-
der (χ2 = 19:36(107); p = 1). Consequently, we deemed our 
sample heterogeneous, accurately representing the popu-
lation of clinic attendees in Saudi Arabia.

The Social Communication Questionnaire (SCQ) was 
collected for most participants in both groups (N = 94). A 
cut-off score of 14 was employed to identify the risk of 
further assessment for autism, which is one of the clinic’s 
initial screening processes. Confirmation of an ASD diag-
nosis was carried out at the clinic by a multidisciplinary 
team comprising five divisions: pediatric neurology, psy-
chology, occupational therapy and sensory integration, 
speech and language pathology, and behavioral analysis 
and observation. In our ASD sample, 60% (N = 36) of par-
ticipants also had their ASD diagnosis confirmed using 
ADOS. In all instances, DSM-5 criteria were applied.

Setup
The testing room was specifically tailored for this experi-
ment, with careful attention given to maintaining consis-
tent lighting, ensuring a constant distance of 50 to 60 cm 
between the participant and the screen, and standard-
izing the height at which participants saw the screen by 
using an adjustable chair and footrest; the average height 
from the floor to the center of the screen was 114 cm.

The experimental setup minimized distractions by hav-
ing participants sit in front of the screen, separated from 
the control computer by a divider. Parents could observe 

Fig. 1  Experiment procedure steps
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their children from behind a one-way glass mirror posi-
tioned behind the participant. Some participants pre-
ferred to have a parent present and to sit on their lap. In 
such cases, the parent was asked to wear black sunglasses 
to prevent data contamination. In compliance with the 
ethical approval obtained for the study, one parent was 
always present during the experiment, either inside the 
room wearing black sunglasses or behind the one-way 
glass mirror. Figure 2 shows the experimental setup uti-
lized for data collection.

Data collection procedure
Visual stimuli were specifically designed for this study 
to investigate differences in visual behavior during social 
perception tests, including left visual field (LVF) bias, 
joint attention, and perception of human and animal car-
toon faces. To examine LVF bias and eye gaze, four dis-
tinct child avatar faces were created. Each stimulus was 
displayed for a total of four seconds while participants’ 
gaze patterns were recorded. Moreover, we included 
images of four animal cartoon faces to explore potential 
similarities and differences in gaze patterns compared to 
human faces.

To assess joint attention, we presented images of chil-
dren avatars with their gaze directed towards one of two 
toys, arranged in a numerically balanced and pseudo-ran-
domized fashion on either the left or the right side of the 
child avatar (Fig. 3). In total, four child avatar identities 
were shown, each appearing twice with the target toy on 

either the left or right side. The time taken to achieve the 
first fixation and the duration participants spent looking 
at the object gazed upon by the avatars were recorded as 
the primary outcome measures. It was anticipated that 
children with autism would be less inclined to direct their 
attention towards the object viewed by the avatars. Par-
ticipants were simply instructed to “look at the screen” 
during the task, with no additional guidance provided. 
Additional metrics were examined during the experi-
ment, using stimuli probing scene perception, visual dis-
engagement, and pupillary reactions; these results will 
be reported in a separate paper. The experiments were 
conducted using iMotions software version 8.3 [17]. 
Visual stimuli were displayed on a 24-inch screen with a 
resolution of 1920 × 1080 pixels. Areas of interest (AOI) 
were designated for each image shown. A screen-based 
eye tracker by Tobii Pro Fusion, which captured gaze data 
at a maximum frequency of 120 Hz [18], was utilized for 
eye-tracking.

Data pre-processing
Relevant areas of interest (AOIs) were drawn on each of 
the stimuli using the iMotions software. For condition 
one (Attention on Eyes), two AOIs were drawn on the 
eyes. For condition two (LVF Bias), AOIs were drawn on 
the left and right sides of the screen. For condition three 
(Joint Attention), AOIs were drawn for congruent and 
incongruent objects. From the iMotions AOI Metrics, 
‘dwell time’ (defined below) was exported for each AOI 

Fig. 2  Experiment room setup
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Fig. 3  Examples of the visual stimuli and AOI for the JA task
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per participant per stimuli. Further, ‘time to first fixa-
tion (TTFF)’ (defined below) was exported for condition 
three. Finally, mean values were calculated per group and 
t-tests were calculated to measure between-group differ-
ences on these metrics. All statistical analyses were done 
in RStudio. Outliers or participants with missing data 
(one to three per prediction) were removed.

In total, the dataset consisted of a binary label (autistic 
or not) and a set of input features for each test of each 
child:

 	• SCQ score.
 	• DwellTimeLeftEye (ms): time spent gazing on the left 

eye (human avatar).
 	• DwellTimeLeftEye_animal (ms): time spent gazing 

on the left eye (animal avatar).
 	• DwellTimeLeftFace (ms): time spent gazing on the 

left side of the face (human avatar).
 	• DwellTimeLeftFace_animal (ms): time spent gazing 

on the left side of the face (animal avatar).
 	• DwellTimeLeftSide (ms): time spent gazing on the 

left side of the screen (human avatar).
 	• DwellTimeLeftSide_animal (ms): time spent gazing 

on the left side of the screen (animal avatar).
 	• DwellTimeCongruent (ms): time spent gazing at the 

same object gazed upon by the avatar.
 	• TTFFLeftEye (ms): time it took for first fixation on 

left eye (human avatar).
 	• TTFFLeftEye_animal (ms): time it took for first 

fixation on left eye (animal avatar).
 	• TTFFLeftFace (ms): time it took for first fixation on 

left side of the face (human avatar).
 	• TTFFLeftFace_animal (ms): time it took for first 

fixation on left side of the face (animal avatar).
 	• TTFFLeftSide (ms): time it took for first fixation on 

the left side of the screen (human avatar).
 	• TTFFLeftSide_animal (ms): time it took for first 

fixation on the left side of the screen (animal avatar).
 	• TTFFCongruent (ms): milliseconds it took for first 

fixation on the same object gazed upon by the avatar.

Machine learning-based classification
To identify the best algorithm for the classification prob-
lem at hand, we tested several popular machine learning 
algorithms, namely: logistic regression, support vector 
machines (SVMs), random forests (RF), and a custom-
made long short-term memory (LSTM) neural network 
[19].

Our LSTM model takes three inputs and predicts if 
the corresponding participant has ASD or not. Each 
input is fed to one of three branches of the model: one 
that takes as input the age and gender of the participant; 
one for the features relative to human avatars, organized 
as sequences of 20 values for each participant; and one 
for the features relative to animal avatars, organized 

as sequences of 5 values for each participant. The two 
sequence inputs are fed to two separate LSTM blocks, 
each consisting of one LSTM layer, which are particu-
larly good at handling sequence data. The output of the 
two LSTM blocks is then concatenated (together with the 
scalar input) and fed to a dense layer, which performs the 
classification via a sigmoid activation function (Fig. 4).

As we had limited amounts of data (104 participants, 
each constituting a data point), we performed K-fold 
cross-validation. It involves splitting the dataset into 
K equally sized folds, training the model on K − 1 folds 
and evaluating its performance on the remaining fold. 
This process is repeated K times, with each fold serving 
as the validation set once, and the results are averaged to 
provide an overall estimate of the model’s performance. 
The technique helps to reduce overfitting and improve 
the generalization of the model. In this study we chose 
K = 5, although K = 10 is another equally valid and popu-
lar choice.

We compare the performance of all models using four 
metrics: accuracy, precision, recall, and F1. All tradi-
tional models were implemented using the Python library 
‘sklearn’, whereas the LSTM model was implemented 
using the Python library ‘tensorflow’.

Results
Descriptive statistics
Table  1 below reports the average ± standard deviation 
values for all the features considered.

The groups showed no statistically significant dif-
ference in terms of dwell time on the eyes for 
human (t = 0.88(87.48), p = 0.38, d = -0.17) or animal 
(t = 1.72(79.48), p = 0.09, d = -0.35) faces, though for the 
animal stimuli there was a clear trend for the autism 
group to focus less on the eyes, with a moderate effect 
size.

Compared with the control group, the autism group 
had shorter dwell times on the left side of the face for 
both human (t = 2.44(101.58), p = 0.02, d = -0.44) and 
animal (t = 3.66(83.65), p = 0.0004, d = -0.73) faces. Dif-
ferences in dwell time on the right side of the face 
were not significant across the groups for neither 
human (t = 0.12(96.92), p = 0.91, d = 0.022) nor animal 
(t = 1.43(85.05), p = 0.16, d = 0.29) faces. Thus, as expected, 
there was a reduced LVF bias in the autism group with a 
moderate to large effect size.

For the congruent (i.e., the object being looked at) 
object in the JA task, the autism group had longer time 
to first fixation (t = 2.57(91.97), p = 0.01, d = 0.5) and a 
shorter dwell time (t = 4.08(62.65), p = 0.0001, d = -0.91) 
than the control group. Effect sizes were large in both 
cases. There were no significant differences in dwell time 
(t = 1.63(91.02), p = 0.11, d = -0.32) or time to first fixa-
tion (t = 0.28(83.85), p = 0.78, d = 0.057) on JA incongruent 
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objects. Thus, as expected, the autism group showed a 
reduction in reflexive joint attention.

Model results
The performance of all models is reported in Table  2, 
where the values reported indicate mean ± confidence 
intervals, averaged over the K folds. As can be seen, the 
random forest model is the best performing one under all 
metrics.

Discussion
In this study, we first examined whether Saudi children 
with and without autism could be differentiated based 
on three types of eye tracking metrics: dwell time on the 
eyes, dwell time on the left side of faces, and joint atten-
tion. The results revealed that the autism group displayed 
deficits in reflexive JA and had a weaker LVF bias dur-
ing face perception compared with the controls, show-
ing these stimuli are useful for characterizing deficits in 
social processing and communication. However, in terms 
of time spent looking in the eyes, although the ASD 
group spent on average less time doing so, the statisti-
cal comparison did not reach significance. Overall, the 
results show that the combination of these metrics was 
sensible for accurate autism identification at the individ-
ual level in our study cohort, making it a candidate bio-
marker worthy of further study.

We then tested a series of machine learning algo-
rithms, to understand if they could learn to classify ASD 
by analyzing eye tracking data. Of the models tested, 

the random forest model proved to be the best across 
all metrics. Interestingly, the LSTM model, which is by 
far the most complex and novel of the ones tested, per-
formed quite poorly, surpassing only logistic regression 
(the most basic algorithm) in terms of F1 score [3]. We 
attribute this to the fact that more complex models tend 
to perform worse than simpler ones in data-scarce appli-
cations, such as the one at hand.

The performance of the random forest model suggests 
it might be a viable screening tool for autism in Saudi 
children. However, considering the context of its usage 
is crucial. Although the assessment may have some use-
fulness in suspected at-risk populations, the prevalence 
differences between autism and non-autism suggest that 
the rates of false positives would be unacceptably high 
for general screening purposes. Further investigation 
will be required to delve into these subjects. It is worth 
noting that while we drew on previous autism research 
to shape our study, it was not immediately apparent that 
the metrics we considered would effectively differentiate 
the groups or accurately classify individual children in 
our specific target population of Saudi children. There is 
a lack of research on this topic for populations in Arabian 
countries, as well as outside of Europe and the US.

While our study represents an important initial stride, 
additional research is necessary to assess the extent to 
which we can distinguish autism from other clinical 
categories, such as non-autistic children with intellec-
tual disability or ADHD, using these eye tracking-based 
measures of social processing [20]. In other words, we 

Fig. 4  The architecture of the proposed LSTM network
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need to determine the accuracy of this battery for dif-
ferential diagnosis. A second limitation of our study 
lies in its utilization of a small sample size. Although 
we took precautions to mitigate overfitting by dividing 
the sample into training and validation sets, the test set 
consisted of only a small group. Moreover, small sample 
sizes are more susceptible to the influence of random 
factors, which prevented us from exploring the specific 
differences between those misclassified (few false nega-
tives and more common false positives) and the rest of 
the participants. It should be noted that these biomark-
ers could potentially be employed for stratification 
within the ASD population, but this would necessitate 
larger sample sizes. Additionally, our knowledge about 
the NT group included in our study is relatively limited. 

For example, we lack information on the extent to which 
this group is matched with the ASD group in terms of IQ 
and other measures. A final limitation stems from the 
COVID restrictions and mask policies, which may have 
distracted certain participants and altered their typi-
cal social interaction behaviors. Despite acknowledging 
these challenges and limitations, we consider the results 
of the current study to be promising, particularly since 
we were able to demonstrate these patterns of difficulty 
in the ASD group within an underexplored geographical 
context. Ultimately, a reliable, accurate, and user-friendly 
autism marker could significantly aid diagnostic deci-
sion-making and prognostic predictions.

Conclusions
The aim of this study was to develop a machine learn-
ing algorithm capable of classifying Saudi children with 
or without autism by analyzing eye-tracking data. We 
show that the random forest model achieves higher per-
formance than other traditional machine learning algo-
rithms and can distinguish between Saudi children with 
and without autism, though specificity limitations sug-
gest that further research and development are required.
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Table 1  Descriptive statistics of all the variables measured. TTF: 
Time to First Fixation (in ms)
Variables ASD Controls
Prediction 1: Attention to the Eyes
Dwell on eyes 
- Human

1424.93 ± 950.28 1578.64 ± 780.05 (t = 0.88(87.48), 
p = 0.38, d = 
-0.17)

Dwell on eyes 
- Animal

1210.68 ± 719.74 1456.34 ± 673 (t = 1.72(79.48), 
p = 0.09, d = 
-0.35)

Prediction 2: Left Visual Field Bias
Left Face 
- humans

822.32 ± 416.11 980.26 ± 244 (t = 2.44(101.58), 
p = 0.02, d = 
-0.44)

Left Face 
- animals

1269.87 ± 830.61 1843.9 ± 722.72 (t = 3.66(83.65), 
p = 0.0004, d = 
-0.73)

Right Face 
- humans

780.76 ± 368.99 773.53 ± 254.29 (t = 0.12(96.92), 
p = 0.91, 
d = 0.022)

Right Face 
- animals

1256.62 ± 743.71 1458.08 ± 638 (t = 1.43(85.05), 
p = 0.16, 
d = 0.29)

Prediction 3 : Joint Attention
Dwell -
Congruent

975.77 ± 447.94 1421.17 ± 567.3 (t = 4.08(62.65), 
p = 0.0001, d = 
-0.91)

TTFF-Congruent 1097.49 ± 567.49 839.33 ± 424.72 (t = 2.57(91.97), 
p = 0.01, d = 0.5)

Dwell -
Incongruent

769.83 ± 447.89 898.1 ± 323.58 (t = 1.63(91.02), 
p = 0.11, d = 
-0.32)

TTFF-Incongru-
ent

1133.45 ± 577.64 1164.32 ± 485.03 (t = 0.28(83.85), 
p = 0.78, 
d = 0.057)

Table 2  Evaluation metrics for the models considered
Model Accuracy Precision Recall F1
Logistic regression 0.59 ± 0.13 0.66 ± 0.17 0.65 ± 0.16 0.65 ± 0.15
SVM 0.61 ± 0.09 0.66 ± 0.15 0.80 ± 0.12 0.71 ± 0.09
Random forest 0.76 ± 0.08 0.78 ± 0.13 0.84 ± 0.07 0.80 ± 0.09
LSTM 0.75 ± 0.15 0.60 ± 0.32 0.80 ± 0.39 0.68 ± 0.34
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